Число 2017 простое, поэтому имеет только два натуральных делителя 1 и 2017.
2017 = 1 * 2017
Поэтому
(а – b) * (а + b) = 1 * 2017
Имеем систему
{а + b = 2017
{а – b = 1
Из второго уравнения получим
а = b + 1
Подставим в первое уравнение
(b + 1) + b = 2017
2 b = 2017 - 1
2 b = 2016
b = 2016 : 2
b = 1008
а = 1008 + 1 = 1009
Проверка чисел а = 1009; b = 1008
1009² – 1008² = 2017
1018081 – 1016064 = 2017
2017 = 2017
ответ: существует только 1 вариант натуральных чисел разность квадратов которых равна числу 2017. Это числа 1008 и 1009.
sapelnikovk-74
02.05.2022
1. Область определения функции
2. Нечетность функции
Функция ни четная ни нечетная................... 3. Точки пересечения с осью Ох и Оу 3.1. С осью Ох
3.2. С осью Оу (х=0)
(0;3) - точки пересечения с осью Оу
Критические точки, возрастание и убывание функции
_____-___(1)_____+_____ Итак, функция возрастает на промежутке x∈ [1;+∞), убывает на промежутке x ∈ (-∞;1]. В точке х=1 функция имеет локальный минимум
Точки перегиба нет так как вторая производная
Горизонтальных, наклонных и вертикальных асимптот нет
а² – b² = 2017
а² – b² = (а – b) * (а + b)
(а – b) * (а + b) = 2017
Число 2017 простое, поэтому имеет только два натуральных делителя 1 и 2017.
2017 = 1 * 2017
Поэтому
(а – b) * (а + b) = 1 * 2017
Имеем систему
{а + b = 2017
{а – b = 1
Из второго уравнения получим
а = b + 1
Подставим в первое уравнение
(b + 1) + b = 2017
2 b = 2017 - 1
2 b = 2016
b = 2016 : 2
b = 1008
а = 1008 + 1 = 1009
Проверка чисел а = 1009; b = 1008
1009² – 1008² = 2017
1018081 – 1016064 = 2017
2017 = 2017
ответ: существует только 1 вариант натуральных чисел разность квадратов которых равна числу 2017. Это числа 1008 и 1009.