Tipan77
?>

Вчетырехугольнике abcd, ab=ad, bc=dc, угол а= 45°, угол в=110°. доказать что δabc=δadc, найти угол d.

Геометрия

Ответы

u-bhank
ΔАВС=ΔАДС по трем сторонам (АВ=АД, ВС=СД  по условию, а сторона АС- общая).
Продлим сторону АВ, тогда угол смежный В равен 70° ⇒ ∠С=70° как накрест лежащий.
т.к. сумма углов четырехугольника равна 360°, то 
∠Д=360-(45+110+70)=135°
Darialaza
1) Наверное, все-таки, РАВНЫЕ отрезки, а не РАЗНЫЕ ?..))
   По теореме Фалеса параллельные прямые откладывают на сторонах угла пропорциональные отрезки. Так как оба отрезка равны, то прямая, проведенная через концы этого отрезка будет параллельна основанию треугольника и, следовательно, будет перпендикулярна медиане к основанию. Последнее следует из того, что в равнобедренном треугольнике медиана к основанию является также биссектрисой угла при вершине и высотой данного треугольника.
Так как данный отрезок перпендикулярен медиане и делится ей пополам так же, как и основание, можно утверждать, что расстояния от концов отрезка до любой точки на медиане будут равны между собой.

2) Так как CED - равнобедренный, то ∠ECD = ∠EDC =>
                                                           ∠ECM = ∠MCD = ∠EDH = ∠HDC
Тогда ΔHDC = ΔMCD по стороне и двум углам:
                                   (CD - общая, ∠HDC = ∠MCD, ∠HCD = ∠MDC)
Отсюда следует, что HC = MD.

В ΔСАН и ΔMAD:  HC = MD, ∠HCM = ∠MDA, ∠MAD = ∠HAC  =>
эти треугольники равны по стороне и двум углам
lk1303

Условие задачи НЕ КОРРЕКТНО. По координатам двух противоположных вершин прямоугольника (B и D) определить координаты двух других вершин (А и С) невозможно без дополнительного условия.  Дело в том, что вершины прямоугольника лежат на окружности диаметра BD и их бесконечное множество.

Смотри рисунок.

Любой точке на окружности соответствует симметричная ей относительно центра О точка, соединив которые с точками В и D получим прямоугольник, так как углы ВАD и ВСD - прямые (вписанные, опирающиеся на дивметр).

Найдем координаты центра окружности, описанной около данного прямоугольника и ее радиус:

О((-4+2)/2; (2-3)/2) или О(-1;-0,5).

R=|ОВ| = √((-4-(-1))²+(2-(-0,5)²) =√15,25. Тогда уравнение окружности (x+1)² + (y+0,5)² =15,25.

ЛЮБАЯ точка на этой окружности - вершина А, симметричная ей относительно центра О точка - вершина С.

Найдем координаты вершин А и С ПРИ УСЛОВИИ, что стороны прямоугольника параллельны осям ординат.

В уравнение окружности подставим координату Х=-4 и найдем для нее соответствующую координату Y: (-3)² + (y+0,5)² =15,25. => Y² + Y -6 = 0.  => Y1=3, Y2=-2. Точно так же для точек с координатой Х=2. Y1=2 и Y2=-3. Тогда имеем: А(-4;-3) и С(2;2).


Определите координаты вершин а и с прямоугольника abcd, если в (−4; 2) и d (2; −3)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Вчетырехугольнике abcd, ab=ad, bc=dc, угол а= 45°, угол в=110°. доказать что δabc=δadc, найти угол d.
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

lolydragon
yurick2071488
Anna Artem
argent
arionul-secondary2
Мамедов
kraevaea
Zelinskaya-Andrei
kuharchuks
tefdst
tatasi
ksankaaleks611
miumiumeaow
alexluu33
info7