(х – а)² + (у – b)² = R² – уравнение окружности, записанное в общем виде, где (а; b) – координаты центра окружности; R – радиус окружности. Из условия задачи известно, что уравнение окружности проходит через точку 8 на оси Ox, то есть через точку с координатами (8; 0), и через точку 4 на оси Oy, то есть через точку с координатами (0; 4). При этом центр находится на оси Oy, значит, точка (0; b) является центром окружности. Подставляя поочередно координаты этих точек в уравнение, получим систему двух уравнений с двумя неизвестными:
(8 – 0)² + (0 – b)² = R² и (0 – 0)² + (4 – b)² = R²;
(8 – 0)² + (0 – b)² = (0 – 0)² + (4 – b)²;
8² + b² = (4 – b)²;
b² – 8 ∙ b + 4² – 8² – b² = 0;
8 ∙ b = – 48;
b = – 6, тогда, R = 10, и уравнение окружности примет вид:
х² + (у + 6)² = 10².
ответ: х² + (у + 6)² = 10² – уравнение данной окружности.
Расстояние от точки до сторон квадрата равно 13 см. Найдите расстояние от точки до плоскости квадрата, если сторона квадрата равна 10 см. можете объяснить, с рисунком
Объяснение:
Расстояние от точки Т до плоскости отрезок ТО ⊥ ( АВС) . Значит ТО перпендикулярен любой прямой лежащей в плоскости.
Т.к. расстояние -это перпендикуляр, то опустим перпендикуляры из точки Т на стороны квадрата : ТН₁ , ТН₂ , ТН₃ , ТН₄. Тогда прямоугольные треугольники ( на рисунке желтые) равны по катету и гипотенузе ( апофема боковой грани).⇒точка О -центр вписанной окружности и еще т. пересечения диагоналей квадрата.
Н₁ Н₃= 10 , ОН₁=5 , из ΔТОН₁ , по т. Пифагора ТО=√(13³-5²)=√144=12 (см)
Поделитесь своими знаниями, ответьте на вопрос:
х^2=400
х=20;
2)Гипотенуза равна 5
синус какого угла?