Babushkina27
?>

Окружность, вписанная в треугольник abc , касается сторон bc и ac в точках m и n соответственно, e и f — середины сторон ab и ac соответственно. прямые mn и ef пересекаются в точке d . а) докажите, что треугольник dfn равнобедренный. б) найдите площадь треугольника bed , если ab = 20 и ∠abc=60°

Геометрия

Ответы

Андрееевич787
Вариант 1, при АВ>BC.
а)  В ∆ АВС отрезок EF - средняя линия, так как соединяет середины
сторон АВ и АС.
ЕF параллельна ВС. Отрезок MD - секущая.
Накрест лежащие углы при пересечении параллельных прямых секущей равны. ∠MDF=∠DMC.
По свойству касательных из одной точки СМ=CN и ∆ МСN - равнобедренный и углы при его основании MN равны (свойство): ∠NMC=∠MNC.
∠MNC=∠FND (вертикальные). Отсюда
∠MDF=∠FND. Треугольник DFN- равнобедренный с основанием DN, FN=FD. Что и требовалось доказать.
 
б)  В любом треугольнике расстояние от вершины треугольника до точки касания вписанной окружности со стороной треугольника, выходящей из данной вершины, есть разность полупериметра треугольника и стороны, противолежащей данной вершине:
То есть CN = (AC + BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=FC-CN = AC/2 - (AC+BC-AB)/2 = AB/2-BC/2.
Но FN = FD (доказано выше) и
ED=EF+FD=EF+FN = BC/2+AB/2-BC/2=AB/2=BE.
Треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Для второго варианта, при АВ<ВС:
а). EF параллельна ВС, MN - секущая. <NDF=<NMC (соответственные углы). СМ=CN (касательные из одной точки) => треугольник MNC
равнобедренный и <NMC=<MNC (углы при основании). Отсюда <MNC=<NDF и треугольник DFN - равнобедренный с основанием ND.
FN=FD. Что и требовалось доказать.

б). CN = (AC+BC+AB)/2 - AB = (AC+BC-AB)/2.
FN=CN-CF = (AC+BC-AB)/2 - AC/2 - = BC/2-АВ/2.
Но FN = FD (доказано выше) и
ED=EF-FD=EF-FN = BC/2-BC/2+АВ/2=AB/2=BE.
То есть треугольник BED равнобедренный. (ВЕ=ED).
Проведем DK параллельно АВ. Тогда четырехугольник DEBK - ромб и его площадь равна S=BE²*Sin (ABC) = 100*√3/2 =50√3.
Треугольник  ВЕD - половина ромба ВЕDK и его площадь равна
Sbed=25√3.

Окружность, вписанная в треугольник abc , касается сторон bc и ac в точках m и n соответственно, e и
retropluse832

1. Берілген нүктелер арқылы өтетін түзудің теңдеуін жазыңыз: А(2;1) В(-1;2). [2 ұпай]

2. Шеңбердің берілген теңдеуі бойынша оның центрінің координаталары мен радиусын табыңыз: (х-4)2 +(у+8)2 =36 [1 ұпай]

3. нүктелері берілген.

a) төбелерінің координаталары бойынша салыңыз; [1 ұпай]

b) қабырғаларының ұзындықтарын табыңыз; [3 ұпай]

c) түрін анықтаңыз (теңқабырғалы, теңбүйірлі, тікбұрышты); [2 ұпай]

d) берілген үшбұрыштың ауданын есептеңіз. [2 ұпай]

4. Төбелері А (1;-1) В (0;1) С (4;3) және Д (5;1) нүктелері болатын төртбұрыштың тіктөртбұрыш болатынын дәлелдеп, оның ауданын табыңыз. Ол үшін:

a) төбелерінің координаталары бойынша сызбасын салыңыз; [1 ұпай]

b) қабырғаларының ұзындықтарын табыңыз; [4 ұпай]

c) диагональдарын анықтап, дәлелдеңіз; [2 ұпай]

d) тіктөртбұрыштың ауданын есептеңіз. [2 ұпай]

памагит

Tatgri
Треугольники AMC и BMC подобны. В подобных треугольниках углы попарно равны.  ∠АМС=∠ВМС - по условию.  ∠ВСМ≠∠АСМ в противном случае дуга АД  была бы равной дуге АД,  что в свою  очередь  ведет  к равенству дуг СВД и  САД.  Из этого получим,  что  СД - диаметр окружности,  перпендикулярный хорде.  Тогда получим,  что АМ=МВ,  что противоречит условию задачи.
  Значит ∠ВСМ=∠САМ.  Составим отношение сходственных сторон в подобных  треугольниках. АС/СВ=СМ/МВ=АМ/СМ.  В два последних  отношения подставим известные  данные,  получим  СМ/9=4/СМ,  СМ²=36,  СМ=6
  Если две хорды окружности, AB и CD пересекаются в точке M, то произведение отрезков одной хорды равно произведению отрезков другой хорды.  АМ*МВ=СМ*МВ

4*9=6*х,      х=6
  СД=СМ+МД=6+6=12(см)

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Окружность, вписанная в треугольник abc , касается сторон bc и ac в точках m и n соответственно, e и f — середины сторон ab и ac соответственно. прямые mn и ef пересекаются в точке d . а) докажите, что треугольник dfn равнобедренный. б) найдите площадь треугольника bed , если ab = 20 и ∠abc=60°
Ваше имя (никнейм)*
Email*
Комментарий*