ПолухинаТененева565
?>

Биссектриса угла а параллелограмма abcd делит сторону bc на равные части найдите стороны параллелограмма если его периметр равен 48 см​

Геометрия

Ответы

nevzorova
1) Сторону правильного n-угольника можно вычислить по формуле a=2R*sin 180/n, где n - количество сторон. Однако, R мы не знаем. Его можно вычислить по другой формуле - R=r/cos 180/n. Подставим сюда известные числовые значения:
R=3/cos 18=3/0.95=3.15 (см).
Найдем сторону фигуры:
a=2*3.15*sin 180/n=2*3.15*0.3=1.89 (см)
ответ: 1.89 см.
2) Найдем R:
R = r/cos 180/n=5/√3/2=10√3/3 (см)
Длина стороны равна R, следовательно a=R=10√3/3, значит, 
P = 6a=10√3/3*6=20√3 (cм) или 34.64 см.
ответ: 20√3 см или 34.64 см.
3) Радиус описанной около 6-угольника окружности = длине стороны, следовательно R = 5√3 см. Для треугольника эта же окружность является вписанной, т.е. для треугольника r=5√3. В свою очередь, R=2r=2*5√3=10√3 (см). Сторону правильного треугольника можно вычислить по формуле a=R√3=10√3*√3=10*3=30 (см).
ответ: 30 см.
Popova-Erikhovich
Пусть BB' медиана стороны AC, тогда B'C=B'A=CA/2, откуда CA=2*B'C(1)По свойству медиан треугольника имеем:   OB/OB' =2/1, или OB=2*OB', откуда OB'=OB/2 =10/2=5  где OB=10 по условию  Тогда BB'=OB+OB'=10+5=15Из прямоугольного треугольника B'CB по теореме Пифагора найдем  B'C = корень[(BB'^2)-(BC^2)]=корень[225-81]=корень[144]=12 где BC=9 по условию   Подставим в (1) вместо B'C его значение, найдем CA:     CA=2*12=24И, наконец, найдем искомую площадь S треугольника ABC:      S=CA*BC/2=24*9/2=12*9=108

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

Биссектриса угла а параллелограмма abcd делит сторону bc на равные части найдите стороны параллелограмма если его периметр равен 48 см​
Ваше имя (никнейм)*
Email*
Комментарий*