Начерти прямоугольную трапецию, проведи высоту из тупого угла, получишь прямоугольный треугольник - одна сторона равна 4х (высота), вторая - 5х (боковая сторона трапеции), а третья 18 (часть основания трапеции, если из большего основания вычесть меньшее этот кусочек будет разностью оснований) по теореме Пифагора получим (5х)^2-(4x)^2=18^2 25x^2-16x^2=324 x^2=36 x=6 боковая сторона трапеции проведенная под углом 90 градусов к основанию равна 4*6=24 , т.к. большая диагональ равна 40 опять по Пифагору считаем большее основание 40^2-24^2=1600- 576=1024 извлекаем корень получим 32 - большее основание 32-18=14 меньшее основание
egorstebenev6
05.09.2022
АВ=3, СД=4, СО=ОД. S(CKL)=?
Рассмотрим треугольник АСД и наклонную ВК. К∈АС. По теореме Менелая (АК/КС)·(СО/ОД)·(ВД/АВ)=1.
Высота равнобедренного треугольника, проведённая к основанию, является медианой, значит АД=ВД ⇒ ВД:АВ=1:2.
(АК/КС)·(1/1)·(1/2)=1, АК/КС=2:1.
Треугольники АОД и ВОД равны по двум сторонам и прямому углу между ними, значит ∠ОАД=∠ОВД. Треугольники ALB и ВКА равны по общей стороне АВ и прилежащим к ней углам, значит АК=BL, значит СК=CL, значит треугольник CKL равнобедренный, значит треугольники АВС и CKL подобны.
Коэффициент подобия тр-ков АВС и CKL: k=AC/КС. АК:КС=2:1 ⇒ АС:КС=3:1=k. Коэффициент подобия площадей тр-ков АВС и CKL k²=3²=9.
S(ABC)=АВ·СД/2=3·4/2=6,
S(CKL)=S(ABC)/k²=6/9=2/3 (ед²) - это ответ.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Касательые в точках а и в к окружности с центром о пересекаются под углом 72°найдите угол аво ответ дайте в градусах
точка пересечения касательных - c, уг. c=72°
рассмотрим четырехугольник aobc.
углы obc=oac=90° (радиусы перпендикулярны касательным)
тогда, aob+90+90+72=360°
aob=360-90-90-72=108°
треугольник aob - равнобедренный, значит, угол abo=bao=(180-aob)/2=(180-108)/2=36°
ответ: 36°