1) M - cередина AD, M∈(ABC), C∈(ABC) ⇒ проведем MC (B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 MNB1C - сечение куба 2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции B1C=a√2 / 2 MN = 1/2 B1C = a√2 / 4 B1H = 1/2 (B1C - MN) = a√2 / 4 NH = √(B1N² - B1H²) = a√10 / 4 S (MNB1C) = 3 a² √5 / 16
cardiodoc08
19.09.2020
1) M - cередина AD, M∈(ABC), C∈(ABC) ⇒ проведем MC (B1C)∈(BCC1), M∈(ADD1), а т.к. (ADD1) || (BCC1), то секущая плоскость будет пересекать (АDD1) по прямой k, проходящей через точку М параллельно B1C. k пересечет АА1 в точке N, причем AN=NA1. N∈(AA1B1) и B1∈(AA1B1) ⇒ проведем NB1 MNB1C - сечение куба 2) MN || B1C, CM=B1N=√(a²-(a/2)²)=a√3/2 ⇒ MNB1C трапеция S (MNB1C) = 1/2 (MN+B1C) * NH, где NH - это высота трапеции B1C=a√2 / 2 MN = 1/2 B1C = a√2 / 4 B1H = 1/2 (B1C - MN) = a√2 / 4 NH = √(B1N² - B1H²) = a√10 / 4 S (MNB1C) = 3 a² √5 / 16
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите площадь пар-ма, вершины которого имеют координаты(1; 3)(6; 3)(9; 6)(4; 6)
ответ:15
Объяснение:
S=a*h=3*5=15