Объяснение:
S(пол) = S(осн)+S(бок) .
Если боковые грани наклонены к плоскости основания под одинаковым углом (в данном случае α), то высота пирамиды проходит через центр окружности вписанной в основании.
S(осн) =b*b*sinβ =b²sinβ.
С другой стороны S(осн) =p*r =(4b/2)*r =2b*r⇒r =b²sinβ/2b = bsinβ/2.(Это можно было написать сразу).
S(бок) =4*b*h/2=2bh , где h апофема боковой грани.
r =h*cosα ⇒h =r/cosα = (bsinβ/2)/cosα =bsinβ/(2cosα) .
Следовательно: S(бок)=2bh=2b*(bsinβ/(2cosα)) = b²sinβ/sinα (И это можно было написать сразу).
Окончательно :
S(пол) = b²sinβ+ b²sinβ/sinα =b²sinβ(1+ 1/sinα)=b²(sinβ/sinα)*(1+ sinα).
ответ: b²(sinβ/sinα)*(1+ sinα).
1+sinα = 1+cos(π/2 -α) =2cos²(π/4 -α/2).
1+sinα =sinπ/2 +sinα =...
списано вот здесь
Поделитесь своими знаниями, ответьте на вопрос:
С рисунком В треугольной пирамиде АВСД найдите угол между прямой СД и прямой, соединяющей середины рёбер ВС и АД, если в основании пирамиды лежит прямоугольный треугольник АВС с катетами АВ=6, ВС=8, а боковые ребра равны 13.
обозначим известный катет за а, а=18, угол А =30 градусам, угол С=90 градусам.
один угол прямоугольного треугольника равен 30 градусам, значит 2 угол равен 60 градусам.
Воспользуемся теоремой синусов и углом в 60 грудусов для нахождения гипотенузы(обозначим ее за с):
находим второй катет (б) = =
т.к. из угла в 60 градусов проводят биссектрису, каждый из образовавшихся углов равен 30 градусам. рассмотрим треугольник образовавшийся стороной б и бессектрисой к стороне а.
для нахождения гиппотенузы(искомый компоннт, обозначим за к) воспользуемся теоремой косинуса: