На окружности поставленны три точки A B и C так, что длина дуги AB равна 33 см, длина дуги BC равно 10 см, длина дуги равна 47 см. Найти наименьший угол треугольника ABC.
3. ∠1 = ∠2, а эти углы - накрест лежащие при пересечении прямых АС и BD секущей АВ, значит
АС║BD.
∠АСВ + ∠CBD = 180°, так как эти углы соответственные при пересечении параллельных прямых АС и BD секущей ВС, тогда
∠АСВ = 180° - ∠CBD = 180° - 68° = 112°
abadaeva
08.01.2021
1. Рассмотрим ΔАОС и ΔВОД. ∠АОС=∠ВОД (как вертикальные).АО=ОВ;СО=ОД. Значит, по первому признаку равенства ΔАОС=ΔВОД.Тогда АС=ВД. Рассмотрим ΔСОВ и ΔАОД. ∠СОВ =∠АОД(вертикальные); СО=ОД; АО=ОВ ⇒ ΔСОВ = ΔАОД (по первому признаку).Следовательно, АД=ВС. Рассмотрим ΔАСД и ΔВСД. СД - общая сторона; ВС=АД; АС=ВД. По третьему признаку равенства треугольников ΔАСД = ΔВСД. 2. Рассмотрим ΔАОВ и ΔДОС. ∠АОВ = ∠ДОС(как вертикальные); АО = ОС (по условию);∠А = ∠С (по условию). Следовательно, по второму признаку равенства треугольников ΔАОВ = ΔДОС.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
На окружности поставленны три точки A B и C так, что длина дуги AB равна 33 см, длина дуги BC равно 10 см, длина дуги равна 47 см. Найти наименьший угол треугольника ABC.
ответ: ∠АСВ = 112°
Объяснение:
1. АО = ОВ и CO = OD по условию,
∠АОС = ∠BOD как вертикальные, значит
ΔАОС = ΔBOD по двум сторонам и углу между ними.
Из равенства треугольников следует, что
АС = BD и ∠САО = ∠DBO.
2. Тогда в треугольниках АСВ и BDA:
АС = BD, ∠1 = ∠2, AB - общая сторона, значит
ΔАСВ = ΔBDA по двум сторонам и углу между ними.
3. ∠1 = ∠2, а эти углы - накрест лежащие при пересечении прямых АС и BD секущей АВ, значит
АС║BD.
∠АСВ + ∠CBD = 180°, так как эти углы соответственные при пересечении параллельных прямых АС и BD секущей ВС, тогда
∠АСВ = 180° - ∠CBD = 180° - 68° = 112°