Построение сводится к проведению перпендикуляра из точки к прямой.
Из вершины А, как из центра, раствором циркуля, равным АС, делаем насечку на стороне ВС. Обозначим эту точку К.
∆ КАС- равнобедренный с равными сторонами АК=АС.
Разделив КС пополам, получим точку М, в которой медиана ∆ КАС пересекается с основанием КС. Т.к. в равнобедренном треугольнике медиана=биссектриса=высота, отрезок АМ будет искомой высотой.
Для этого из точек К и С, как из центра, одним и тем же раствором циркуля ( больше половины КС) проведем две полуокружности. Соединим точки их пересечения с А.
Отрезок АМ разделил КС пополам и является искомой высотой ∆ АВС из вершины угла А.
Поделитесь своими знаниями, ответьте на вопрос:
хотя бы с несколькими заданиями
см.
Объяснение:Проведём отрезки и .
=======================================================
и - радиусы данной сферы ⇒ они равны.
⇒ - равнобедренный, где - расстояние от точки до прямой и высота равнобедренного
Высота, проведённая из вершины равнобедренного треугольника к основанию равнобедренного треугольника, является биссектрисой и медианой.
⇒ - высота, медиана и биссектриса.
см, так как - медиана.
- прямоугольный, так как - высота.
Найдём радиус по теореме Пифагора .
см.
Итак, радиус данной сферы = см.