Пусть стороны АВ и ВС треугольника соответственно равны 1 и √15 а его медиана ВМ равна 2.На продолжении медианы BM за точку M отложим отрезок MD, равный BM. Из равенства треугольников ABM и CDM (по двум сторонам и углу между ними) следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1 по формуле герона р=(√15+4+1)/2=(√15+5)/2 s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)= √((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16) =√(((25-15)(15-9))/16)=√60/√16=2√15/4 2*3.87/4=1.94
сергей1246
23.11.2020
1. 1) у тебя дан равнобедренный треугольник, так как обе стороны равны. 2) высота делит его на два прямоугольных треугольника. а ещё она делит основу на пополам // два равных отрезка. 3) берёшь любой из этой пары и находишь неизвестный катет по небезизвестной теореме пифагора: квадрат гипотенузы равняется суме квадратов катетов. 4)отсюда находишь катет этот алгоритм пригодится, если нужно найти высоту проведённую к основе. а в остальном не знаю 2. можно поступить хитростью: найди периметр и площадь основного, а затем умнож их на 1/4. так ты найдёшь параметры треугольника, подобного данному. (я не уверен, что так можно, но попробуй). предлагаю другой способ, если что: попробуй найти 1/4 каждой стороны, а затем найти площадь и периметр треугольника с новонайденными сторонами, таким образом найдёшь вышеупомянутые параметры подобного треугольника,т.е. тоже самое
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Найдите наибольшее и наименьшее значения функции y = х5+ х3+4 на отрезке (-2;1
ВС=√15; ВD=2ВМ = 2*2=4 ; DС=АВ=1
по формуле герона
р=(√15+4+1)/2=(√15+5)/2
s=√(p(p-BC)(p-BD)(p-DC))=√((√15+5)/2)((√15+5)/2-√15)((√15+5)/2-4)((√15+5)/2-1)=
√((√15+5)/2)((-√15+5)/2)((√15-3)/2)((√15+3)/2)=√(((√15+5)(5-√15)(√15-3)(√15+3))/16)
=√(((25-15)(15-9))/16)=√60/√16=2√15/4
2*3.87/4=1.94