Дано: трапеция АВСД, где ВС – меньшее основание. АВ=ВС=СД. Из т.В опустили высоту ВЕ к стороне АД. Точка О – пересечение ВЕ и АС. ВО=10, ОЕ=8.
1) 1) Пусть ВС=х, тогда АВ=х. Из треугольника АВЕ: АЕ^2=AB^2-BE^2=x^2-(10+8)^2=x^2-324
2) 2) Треугольники АОЕ и ВОС подобны по 2-м углам (углы АОЕ и ВОС равны как вертикальные; углы ОАЕ и ОСВ равны как накрест лежащие при 2-х параллельных прямых), тогда АЕ:ВС=ОЕ:ОВ. Отсюда АЕ=ВС*ОЕ/ОВ=х*8/10. Значит АЕ^2=x^2*64/100
3) 3) Подставим уравнение из п.2 в п.1: x^2-324= x^2*64/100. Отсюда х=30
4) 4) Тогда АЕ^2=30^2-324=576. Отсюда АЕ=24
5) 5) АД=ВС+2*АЕ=30+2*24=78
6) 6) S=1/2*(ВС+АД)*ВЕ=1/2*(30+78)*18=972
Поделитесь своими знаниями, ответьте на вопрос:
Если MP= 25 мм, KL= 27 мм, ML= 40 мм, то KP=__мм
38 мм
Объяснение:
PMKL
MK = ML - KL = 40 - 27 = 13
KP = MK + MP = 13 + 25 = 38 мм