Отрезки средней линии трапеции являются средними линиями треугольников АВС и АСD, так как эти отрезки проходят через середину боковой стороны параллельно основанию. По свойствам средней линии имеем: ВС=2*2=4 см, а АD=2*5=10 см. Трапеция равнобедренная, значит высота ВН, проведенная у большему основанию, делит его на два отрезка, большй из которых равен полусумме оснований, а меньший - их полуразности. Значит АН=(10-4):2=3 см. В прямоугольном треугольнике АВН катет АН равен половине гипотенузы АВ, следовательно, угол, против которого лежит этот катет (<ABH), равен 30° (свойство). В прямоугольном треугольнике сумма острых углов равна 90°, значит <A=90°-30°=60°. Углы трапеции, прилежащие к боковой стороне, в сумме равны 180°. Значит угол В=180°-60°=120°. Так как трапеция равнобедренная, углы при основаниях равны. ответ: <A=<D=60°, <B=<C=120°.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Вычислите фигуры цилиндр покажите варианты сочинений цилиндра плоскостью определите площадь наружной поверхности равна 50 сантиметров , н=70
АСДК - трапеция, основания АС=12 см и ДК=4 см
АВ = 12-4 = 8 см
АК = 12+4 = 16 см
По Пифагору
ВК² = АК²-АВ² = 16²-8² = 256-64 = 3*64
ВК = 8√3 см
∠ВАК = arccos(АВ/АК) = arccos(1/2) = 60°
∠ВКА = 90 - ∠ВАК = 30°
∠ДКА = ∠ВКА + 90 = 120°
Полная площадь трапеции
S(ACDK) = 1/2(AC+DK)*BK = 1/2(12+4)*8√3 = 64√3 см²
Площадь сектора большого круга (серая штриховка)
S₁₂ = πR²/360*α = π*12²*60/360 = π*12*12/6 = 24π см²
Площадь сектора малого круга (зелёная штриховка)
S₄ = πR²/360*α = π*4²*120/360 = π*16/3 = 16π/3 см²
И площадь странной фигуры около касательной
S = S(ACDK) - S₁₂ - S₄ = 64√3 - 24π - 16π/3 см²
S = 64√3 - 88π/3 см²