Внутри треугольника АВС взята точка D такая, что угол ABD = угол ACD = 45°. Докажите, что отрезки AD и BC перпендикулярны и равны, если угол ВАС равен 45°
* * *
Продлим ВD до пересечения с АС в т.Н, а отрезок СD - до пересечения с АВ в т.К и проведем АМ через т.D.
∠АСD=45° по условию, Если ∠ВАС=45°, то ∠АКС=90° и ∆ АСК – равнобедренный прямоугольный. АК=СК.
В ∆ АВН два угла при АВ равны 45°⇒∠ВНА=90° и ∆ АВН - равнобедренный прямоугольный, Тогда точка D - пересечение высот СК и ВН треугольника АВС. Отрезок АМ, содержащий АD, проходит через точку пересечения высот, следовательно, является высотой и перпендикулярен ВС. Отсюда АD⊥ВС. Доказано.
Прямоугольные ⊿ АКD и ⊿ CMD подобны по равному углу при вершине D ( вертикальные) ⇒ ∠КАD=∠MCD.
Рассмотрим ⊿ АКD и ⊿ ВКС. Из ⊿ АКС их катеты АК=СК. Острые ∠КАD и ∠КСВ равны (из доказанного выше). Следовательно, ⊿ АКD=⊿ ВКС по катету и острому углу. Отсюда следует равенство гипотенуз этих треугольников. АD=ВС, ч.т.д.
Поделитесь своими знаниями, ответьте на вопрос:
тупому , буду благодарин всем за ответ 1. В колі проведені радіуси OА і OВ. Знайдіть градусну міру кута АОВ, якщовідповідна йому дуга дорівнює 70°.А) 290°; Б) 140°;В) 35°; Г) 70°.2. В прямокутному трикутнику АВС, ВС = 35 см, АВ = 10 см. Знайдіть АВС.А) 60°; Б) 30°;В) 45°; Г) 90°.3. Знайдіть середню лінію трапеції, якщо її менша основа дорівнює 5 см істановить 31її більшої основи.А) 5 см; Б) 15 см;В) 9 см; Г) 10 см.4. Точки М і Р лежать відповідно на бічних сторонах АВ і ВС рівнобедреноготрикутника АВС, причому МР || АС. Знайдіть периметр АВС, якщоМР = 4 см, МВ = 5 см, АС = 12 см.А) 27 см; Б) 42 см;В) 31, 2 см; Г) 36 см.5. Знайдіть діагональ прямокутника, якщо одна з його сторін дорівнює 8 см, апериметр дорівнює 46 см.А) 17 см; Б) 23 см;В) 20 см; Г) 38 см.
ОА=ОС=х, ОВ=у.
1) 6²=х²+у²-2хуcos120°=x²+y²+xy=36.
2) 4²=x²+y²+2xycos60°=x²+y²-xy=16.
Вычтем из первого уравнения второе 2ху =20.
ху=10. у=10/х. Подставим в первое
х²+100/х²+х·(10/х)=36,
х²+10/х²+10=36,
х²+10/х²-26=0,
Пусть х²=к,
к+10/к-26=0,
к²-26к+10=0.
к=13+-√156≈13+-12,6.
к1=25,6; к2= 0,4 не рассматриваем
х=√25,6≈5,1.
Подставим в первое уравнение
х²+у²+ху=36,
26,01+у²+5,1у=36,
у²+5,1у-9,99=0,
у=1,5.длина диагоналей параллелограмма: 5,1·2=10,2; 1,5·2=3.
Площадь S= 0,5·10,2·3·sin60°=7.65/
ответ: 7,65.