Доказательство:
Т.к. ABCD - параллелограмм, то AB//CD и AD//BC.
∠ECD = ∠CEB как накрест лежащие при параллельных прямых AB и CD и секущей EC.
∠EDC = ∠DEA как накрест лежащие при параллельных прямых AB и CD и секущей ED.
Т.к. EC = ED , то ΔECD - равнобедренный с основанием CD.
Значит ∠ECD = ∠EDC как углы при основании.
Следовательно ∠CEB = ∠DEA
ΔEBC = ΔEAD по двум сторонам и углу между ними (EB = EA по условию.)
См. рисунок 2.
Из равенства треугольников EBC и EAD следует, что ∠EBC = ∠EAD
и ∠BCE = ∠ADE
∠BCD = ∠BCE + ∠ECD
∠ADC = ∠ADE + ∠EDC
Следовательно ∠BCD = ∠ADC
Продолжим сторону AD влево.
∠FAB = ∠ABC как накрест лежащие при параллельных прямых AD и BC и секущей AB.
∠FAB = ∠ADC как соответственные при параллельных прямых AB и DC и секущей AD
Собирая все вместе получаем, что ∠ABC = ∠BCD = ∠CDA = ∠DAB
Получается, что ABCD - параллелограмм в котором все углы равны. Следовательно ABCD - прямоугольник
1). 96 см.; 2). 78 cм.
Объяснение: задача имеет 2 варианта решения
1). Дано: АВСD - параллелограмм, АК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔАВК - равнобедренный (∠ВАК=∠КАD по определению биссектрисы, ∠ВКА=∠КАD как внутренние накрест лежащие при ВС║АD и секущей АК), значит АВ=ВК=19 см.
АD=ВС=19+10=29 см; СD=АВ=19 см (как противоположные стороны параллелограмма)
Р=19*2+29*2=96 см.
2) Дано: АВСD - параллелограмм, DК - биссектриса, ВК=19 см, КС=10 см. Найти Р (АВСD).
Рассмотрим ΔDCК - равнобедренный (∠АDК=∠КDC по определению биссектрисы, ∠CКD=∠КDA как внутренние накрест лежащие при ВС║АD и секущей DК), значит KC=CD=10 см.
АD=ВС=19+10=29 см; СD=АВ=10 см (как противоположные стороны параллелограмма)
Р=10*2+29*2=78 см.
2. 42°, 138°
3. 87 и 106 градусов
4. 336, 336, 12, 12
Объяснение:
2. (180° - 96°) : 2 = 42° - меньший угол
42° + 96° = 138° - больший
3. Решим данную задачу при уравнения.
Пусть один из смежных углов х градусов, тогда второй из смежных углов (х + 32) градусов. Нам известно, что сумма градусных мер смежных углов равна 180 градусов. Составляем уравнение:
х + х + 32 = 180;
х + х = 148;
х * (1 + 1) = 148;
х * 2 = 148 (для того, чтобы найти неизвестный множитель, нужно произведение разделить на известный множитель);
х = 148 : 2;
х = 74 градусов — один из смежных углов;
74 + 32 = 106 градусов — второй из смежных углов.
4. При пересечении 2 прямых образуется 4 угла, углы ровны попарно
360-(12+12)=336 градуса - это два тупых угла
336:2=168 градуса - один тупой угол
Поделитесь своими знаниями, ответьте на вопрос:
решить геометрическую задачу. Фото прикрепил.
больше не чего не дано?