Поделитесь своими знаниями, ответьте на вопрос:
Сторона ВС треугольника АВС равна 18 см. Сторона АВ разделена на 3 равные части и через точки деления проведены прямые, параллельные стороне АС. Найдите длины отрезков этих прямых, содержащихся между сторонами треугольника
Прямая ВС лежит в плоскости квадрата АВСD, а прямая МА лежит вне этой плоскости, поскольку точка М лежит вне плоскости АВСD (дано), а через две точки можно провести только одну прямую. Прямая ВС не имеет общих точек с прямой МА, так как она параллельна прямой АD и не имеет с ней общих точек, а точка А - общая точка прямых МА и АD. Следовательно, прямые ВС и МА - скрещивающиеся, что и требовалось доказать.
Чтобы найти угол между скрещивающимися прямыми, надо провести прямую, параллельную одной из двух скрещивающихся прямых так, чтобы она пересекала вторую прямую. Мы получим пересекающиеся прямые, угол между которыми равен углу между исходными скрещивающимися.
В квадрате ABCD AD параллельна ВС, и пересекает прямую МА в точке А. Следовательно, угол МАD и есть угол между скрещивающимися прямыми МА и ВС и равен 45°
ответ: угол между прямыми МА и ВС равен 45°.