aza2103
?>

хорда CD окружности пересекает её диаметр AB=8 см в точке K под углом 30 градусов. Найдите длину хорды BE, перпендикулярной хорде CD

Геометрия

Ответы

sv-opt0076
В правильной четырехугольной пирамиде MABCD, все ребра которой равны 1,боковые рёбра - равносторонние треугольники.
Их высота - это апофема А.
Она равна 1*cos 30° = √3/2.
Проведём осевое сечение перпендикулярно рёбрам основания ВС и АД.
В сечении имеем равнобедренный треугольник с боковыми сторонами по (√3/2) и с основанием, равным диагонали d основания пирамиды.
d = a√2 = 1*√2 = √2.
По теореме косинусов:
cos M = ((√3/2)² + (√3/2)² - (√2)²)/(2*(√3/2)*(√3/2)) = 1/3.
Угол М (а он и есть искомый угол плоскостями MAD и MBC) равен:
<M = arc cos(1/3) =  1,230959 радиан = 70,52878°.

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

хорда CD окружности пересекает её диаметр AB=8 см в точке K под углом 30 градусов. Найдите длину хорды BE, перпендикулярной хорде CD
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

Poroskun
dg9792794674
bellenru
doorhan42n6868
ngoncharov573
Akopovich802
Alekseevna1811
Марина
Васильевич Валерьевна
alexeylipatov
Mikhailovich_Viktoriya
ALLA1868
ktv665
Некрасова-И
Serkova_Elena251