x∈(0,8; 1,6)∪(1,6; 2,4)
Объяснение:
25·x²–4·| 8–5·x | < 80·x–64
25·x²–80·x+64–4·| 5·x –8 | <0
| 5·x –8 |² – 4·| 5·x –8 | <0
Введём обозначение t = | 5·x –8 | , понятно что t ≥ 0:
t² – 4·t <0 ⇔ t·(t – 4) <0 ⇔ t ∈(0; 4) ⇔ 0 < t < 4.
Обратная замена:
0 < | 5·x –8 | < 4 .
Так как | 5·x –8 | ≥ 0, то для | 5·x –8 | > 0 достаточно x ≠ 8/5=1,6.
Рассмотрим второе неравенство:
| 5·x –8 | < 4 ⇔ –4 < 5·x –8 < 4 ⇔ 4 < 5·x < 12 ⇔ 4/5< x < 12/5 ⇔
⇔ x∈(0,8; 2,4). Но x ≠ 1,6 и поэтому ответ:
x∈(0,8; 1,6)∪(1,6; 2,4).
|x + 2|(x² – a²) > 0
1) a ≤ –2: x ∈ (–∞; a) ∪ (–a; +∞)
2) –2 < a < 0: x ∈ (–∞; a) ∪ (–a; +∞) \ {–2}
3) a = 0: x ∈ (–∞; +∞) \ {–2; 0}
4) 0 < a < 2: x ∈ (–∞; –a) ∪ (a; +∞) \ {–2}
5) a ≥ 2: x ∈ (–∞; –a) ∪ (a; +∞)
Объяснение:
Выражение |x + 2|(x² – a²) -- может менять знак только в точках, являющихся корнями уравнения |x + 2|(x² – a²) = 0, то есть корни делят числовую прямую на интервалы, в пределах которых знак сохраняется.
Для решения неравенства |x + 2|(x² – a²) > 0 необходимо нанести корни на числовую прямую и пометить те интервалы, на которых выражение |x + 2|(x² – a²) является положительным. Сами корни не будут входить в ответ, поскольку неравенство строгое.
Корнями являются значения x₁ = –2, x₂ = –a, x₃ = a. Существует несколько возможных вариантов расположения этих корней на числовой прямой, поэтому необходимо рассмотреть их все по отдельности (см. рисунок).
Ну воь смотри у тебя там есть такая табличка с надписью"существуют учебники по математике и ты нажимаешь на неё и зажимаешь правую кдавишу на мышке и переносишь её в ту табличку которая должна давать правильное утверждение зелёной таблицы я так думаю это зеленая соответствует той коричневой с надписью"общие утверждения если ещё там есть такое задание то тогда так же перетаскивай в нужную табличку ту табличку"
Объяснение:
Надеюсь я толком объяснила если все же не правильно пиши в коментарях я отвечу
Поделитесь своими знаниями, ответьте на вопрос:
решение представлено на фото
Объяснение: