ответ:
cos(x)+cos(2x)+1=0
2cos^2(x)+cos(x)+0
w=cos(x)
это уравнение вида:
a*w^2+b*w+c=0
w1=- √(d )-b/2a
w2=√(d )-b/2a
где d=b^2-4*a*c
d=1
w1=0
w2=-1/2
делаем обратную замену
cos(x)=w
x=πn+acos(w)
x=πn+acos(w)- π
x1= πn+acos(w1)
x1= πn+acos(0)
x1= πn+π/2
x2= πn+acos(w2)
x2= πn+acos(-1/2)
x2= πn+2π/3
x3= πn+acos(w1)- π
x3= πn-π+acos(0)
x3= πn-π/2
x4= πn+acos(w2)- π
x4= πn-π+acos(-1/2)
x4= πn-π/3
ответ
x1= -π/2
x2= π/2
x3= i(log(2)-log(-1-√3 i))
x4= i(log(2)-log(-1+√3 i))
объяснение:
1/n*(n+1) = 1/n - 1/(n+1) используем эту формулу
1/(x + 2019)(x + 2020) + 1/(x + 2020)(x + 2021) + 1/(x + 2021)(x + 2022) + 1/(x + 2022)(x + 2023) = 1/
1/(x + 2019) - 1/(x + 2020) + 1/(x + 2020) - 1/(x + 2021) + 1/(x + 2021) - 1/(x + 2022) + 1/(x + 2022) - 1/(x + 2023) = 1/
1/(x + 2019) - 1/(x + 2023) = 1/
(x + 2023 - x - 2019)* = (x + 2019)(x + 2023)
4* = x² + 4042x + 2019*2023
x² + 4042x + 2019*2023 - 4* = 0
4* = 4*1 - 4 = 36
2019*2023 = (2021 - 2)(2021 + 2) = 4084441 - 4 = 4084437
x² + 4042 x + 84441 = 0
d = b² - 4ac = 4042² - 4*84441 = 4*2021² - 4*84441) = 4*(4084441 - 84441) = 4*4 = 2²*2000² = 4000²
x12 = (-4042 +- 4000)/2 = -4021 и -21
ответ -21 и -4021
Поделитесь своими знаниями, ответьте на вопрос:
Решить систему уравнений {6x+3=8x-3(2y-4) 2(2y-3y)-4x=2y-8
6x + 3 = 8x - 6y + 12
2x - 6y + 8 = 0
///////////////////////
- 2y - 4x - 2y + 8 = 0
- 4y - 4x + 8 = 0
-x - y - 2 = 0
//////////////////
2x - 6y + 8 = 0
- x - y - 2 = 0
//////////////
x - 7y + 6 = 0
x = 7y - 7
///////////////
-2y -4*(7y - 7) - 2y + 8 = 0
- 4y - 28y + 28 + 8 = 0
- 32y = - 36
y = 1.125
//////////////
x = 7y - 7 = 7.875 - 7 = 0.875