Пусть ABCD ромб , известен тупой угол : <B = <D > 90° . BH⊥ AD. В прямоугольном треугольнике BAH известны сумма гипотенузы AB и катета BH , а также острые углы <A=180° - <B и <ABH =α =<B -90°(построения этих[ углов не трудно). По этим данным построим ΔBAH . Анализ: допустим, что Δ BAH уже построен ; продолжаем AB на величину BE=BH. < BEH = <BHE =α/2 (=1/2<B -45°). ΔAEH известен ; по стороне AE =AB+BE=AB+BH и двум прилежащим к ней углам. Построим ΔAEH. Точка B(вершина) равноудалена от концов отрезка EH ( BE=BH), т.е. находится на серединном перпендикуляре отрезка EH. Затем ΔAEH дополняем до ромба ABCD .
vdm4275
06.02.2022
Решение перед решением вспоминаем, что точка, равноудаленная от сторон угла, лежит на его биссектрисе.
dshi67orbru
06.02.2022
ответ А решение: правильный треугольник вписан в окружность, значит центр окружности лежит в центре треугольника. проведем три радиуса в вершины треугольника, получим 3 равнобедренных треугольника с большей стороной равной 30/3=10 см. в одном треугольнике проведем высоту. высота в равнобедренном треугольнике является и мереданной и бессектрисой и делит большую сторону пополам 10/2=5. далее находим радиус окружности это косинус(30)=5/Х. отсюда Х =10/корень3. далее проводим радиусы в квадратк к вершинам. и находим сторону квадрата косинус45=радиус/Х отсюда Х равен 10×корень6/3. перимитр равен 4×Х и равен 40корень6/3
kbndbyb6
06.02.2022
PΔ=36, треугольник правильный, значит сторона треугольника равна : 36:3=12. Опустим высоту в треугольнике до пересечения с окружностью. Соединим полученную точку с одной из оставших вершин заданного треугольника. Получим прямоугольный треугольник, гипотенуза которого является диаметром окружности. Угол между высотой треугольника и его стороной равен 30°. Высота в правильном треугольнике является и биссектрисой и медианой. 60°:2=30°. Вычислим диаметр окружности: d=12:cos30°=12:(√3/2)=24/√3=24·√3/√3·√3=24√3/3=8√3. Диагональю квадрата является диаметр окружности. Обозачим сторону квадрата через а. По теореме Пифагора: a²+a²=d², 2a²=(8√3)². 2a²=64·3, a²=32·3=16·2·3, a=√16·6=4√6. a=4√6.
Ответить на вопрос
Поделитесь своими знаниями, ответьте на вопрос:
Постройте ромб, если известны тупой угол и сумма стороны и высоты. объясните, !
BH⊥ AD.
В прямоугольном треугольнике BAH известны сумма гипотенузы AB и катета BH , а также острые углы <A=180° - <B и <ABH =α =<B -90°(построения этих[ углов не трудно). По этим данным построим ΔBAH .
Анализ:
допустим, что Δ BAH уже построен ; продолжаем AB на величину BE=BH.
< BEH = <BHE =α/2 (=1/2<B -45°). ΔAEH известен ; по стороне AE =AB+BE=AB+BH и двум прилежащим к ней углам. Построим ΔAEH.
Точка B(вершина) равноудалена от концов отрезка EH ( BE=BH), т.е. находится на серединном перпендикуляре отрезка EH. Затем ΔAEH дополняем до ромба ABCD .