Cоставим сначала уравнение плоскости, проходящей через ось ОУ и точку М(5,3,2).
Так как ось ОУ принадлежит искомой плоскости α, то любая точка, лежащая на оси ОУ, принадлежит плоскости α . В том числе и начало координат, точка О(0,0,0) ∈α .
Так как точка М(5,3,2)∈α , то и вектор ОМ∈α . Координаты вектора ОМ=(5,3,2) .
Также единичный вектор оси ОУ, вектор j=(0,1,0) , принадлежит плоскости α .
Можем записать нормальный вектор искомой плоскости α как векторное произведение векторов ОМ и j .
Общие уравнения прямой, образованной пересечением двух заданных плоскостей имеют вид:
1. Найти угол между векторами AС и АB.
*Можно искать не косинус угла, а найти длину вектора BC, тогда ΔABC -- равносторонний и углы равны по 60°.
2. Найти координаты центра сферы и длину ее радиуса. Найти значение m.
Приведём уравнение к общему виду (x - x₀)² + (y - y₀)² + (z - z₀)² = R²:
Тогда O (x₀; y₀; z₀) -- центр сферы, O (0; 1; -2),
R² = 16 ⇒ R = 4
Если точка принадлежит сфере, то подставив её координаты в уравнение, получится верное равенство. Подставим точки A и B в уравнение сферы:
3. Найти уравнение плоскости α.
Ax + By + Cy + D = 0 -- общее уравнение плоскости.
n = (A; B; C) -- вектор нормали ⇒ A = 1, B = 2, C = 3, тогда
Если точка принадлежит плоскости, то подставив её координаты в уравнение, получится верное равенство:
4. Найти общее уравнение прямой.
Общее уравнение прямой представляет собой систему уравнений двух пересекающихся плоскостей. Решение этой системы есть пересечение плоскостей, то есть прямая.
Зададим прямую параметрически:
Исключим параметр λ:
Последняя система -- это общее уравнение прямой.
Поделитесь своими знаниями, ответьте на вопрос:
Сторона равностороннего треугольника равна 12 корень из 3 найдите его биссектрису
Т.к. высота является медианой, то она делит основание пополам, тогда один из катетов равен 12√3/2=6√3. Гипотенуза равна стороне 12√3, остаётся найти оставшийся катет по теореме Пифагора: . Этот катет является и биссектрисой исходного треугольника.