обозначим призму АВСDА1В1С1D1
красным цветом обозначено боковое ребро призмы и равно оно 14 см
зеленым цветом обозначена высота проведенная из точки А в точку Н и состовляющая угол с плоскостью основания 90 градусов.
получается прямоугольный треугольник АА1Н с гипотенузой АА1. одна из теорем прямоугоьного треугольника гласит: катет лежащий против угла в 30 градусов равен половине гипотенузы. в нашем случае таким катетом является искомая высота АН и она равна 14/2=7см
P.S. я не художник((( простите((
В условии опечатка: в пункте б) надо найти отношение площадей треугольника ВОС и НЕвыпуклого пятиугольника AOBCD.
а) ∠ОВС = ∠ОСВ по условию, значит ΔОВС равнобедренный с основанием ВС, ОВ = ОС.
АС = CD по условию, значит ΔACD равнобедренный с основанием AD, ∠CAD = ∠CDA.
О - середина АС, значит
ОВ = ОС = ОА.
Итак, AD = 2BC (по условию), AC = 2OC и CD = 2OB, тогда
ΔADC подобен ΔСОВ по трем пропорциональным сторонам. Значит
∠ВСО = ∠DAC, а эти углы накрест лежащие при пересечении прямых AD и ВС секущей АС, значит BC║AD.
б) Коэффициент подобия треугольников ВОС и DAC:
k = 1/2
Площади подобных треугольников относятся как квадрат коэффициента подобия:
Sboc : Sdac = k² = 1/4
Т.е. Sdac = 4Sboc, тогда площадь пятиугольника AOBCD:
Saobcd = Sboc + Sdac = 5Sboc,
Sboc : Saobcd = 1 : 5
Поделитесь своими знаниями, ответьте на вопрос:
Гипотенуза прямоугольного треугольника равна 29.один из катетов равен 11.найдите другой катет.