Wlad967857
?>

за решение трех задач. Подсобите

Геометрия

Ответы

Татьяна-Мария

1. В прямоугольном треугольнике DCE ∠C = 90°, ∠D = 60°, CE = 3 см. Найдите CD и площадь треугольника.

S_{DCE} =\frac{CD\cdot CE}{2}

Нужно найти чему равен катет CD.

1) tg\alpha =\frac{a}{b}, где а — противолежащий катет, b — прилежащий

tg60^{o}=\frac{3}{CD}\\\\\sqrt{3} =\frac{3}{CD}\\\\CD=\frac{3}{\sqrt{3}} (cm)

Находим площадь ΔDCE:

S=\frac{3\cdot 3}{2\sqrt{3} } =\frac{9}{2\sqrt{3} } (cm^2)

ответ:  CD=\frac{3}{\sqrt{3}} cm;  S_{DCE}=\frac{9}{2\sqrt{3}} (cm^2)  

2. В прямоугольном треугольнике PKT ∠T = 90°, KT = 7 см, PT = 7√3 см. Найдите ∠K и гипотенузу треугольника.

По т. Пифагора находим гипотенузу PK:

PK= \sqrt{PT^2+KT^2}= \sqrt{(7\sqrt{3} )^2+7^2}=\\= \sqrt{49\cdot 3 + 49} = \sqrt{49(3+1)}= \sqrt{49} \cdot \sqrt{4} = 7\cdot 2=14 (cm)

Находит чему равен ∠K

sinK=\frac{PT}{KP}\\sinK=\frac{7\sqrt{3} }{14} = \frac{\sqrt{3}}{2} = 60^o

ответ: PT = 14 см; ∠K = 60°.

3. В равнобедренной трапеции меньшее основание равно 8 см, а высота равна √3 см. Найдите площадь трапеции, если один из ее углов равен 150°.

Обозначим трапецию за ABCD, меньшее основание за BC = 8 см, высоты за BH и BH' = √3 см, ∠B = 150° (при меньшем основании).

BCHH' — прямоугольник, образованный основами и высотами. Отрезки BC = HH' = 8 см.

S_{ABCD}=\frac{BC+AD}{2}\cdot BH

Необходимо  найти большее основание AD.

Т.к. трапеция равнобокая, угли при основания равны. Сумма углов выпуклого четырехугольника равна 360°. Поэтому сумма углов при большем основании будет равна:

360−(150°+150°) = 360°−300° = 60°

Значит, угол ∠A = ∠D = 60°/2 = 30°

Р-м ΔABH и ΔDCH': прямоугольные, т.к. образованы высотой трапеции; равные, т.к. трапеция ABCD равнобедренная ⇒ AH = DH'.

Отрезок AH выразим с тангенса угла.

tg30^o=\frac{\sqrt{3} }{AH} ; \frac{1}{\sqrt{3} } =\frac{\sqrt{3} }{AH}\\\\AH=\sqrt{3} \cdot \sqrt{3}=3 (cm)

Находим длину большего основания:

AD=AH+DH'+HH'\\AD = 2\cdot 3+ 8 = 6+8=14 (cm)

Находим площадь трапеции:

S_{ABCD}= \frac{8+14}{2}\cdot \sqrt{3} = 11\sqrt{3} (cm^2)

ответ: площадь трапеции 11√3 см².

Тоноян

Чертим пирамиду, диагонали основания (АС) и (ВС), высотупирамиды (SO). О-точка пересечения (АС) и (ВС) и центр квадрата АВСD. треугольник  ASC равен треугольнику АВС по трем сторонам. Значит треугольник ASC прямоугольный равнобедренный. АС=sqrt(2),  АО=ОС=OS=sqrt(2)/2.

Все боковые грани пирамиды равносторонние треугольники со стороной 1. Апофемы пирамиды равны высртами этих треугольников и равны sqrt(3)/2. Проведём сечение через вершину пирамиды S и середины рёбер AD (точка М) и ВС (точка N). Угол между АВ и плоскостью SAD равен углу между AB и SM, значит равекн углу между SM и NM или углу SMO.

Из треугольника SOM  получаем : cos(SMO)=(1/2)/sqrt(3)/2=1/sqrt(3)/3

bestform

Рисунок - во вложении.

Т.к. E и F - внутренние точки отрезка АВ, и по условию АЕ=BF, то

для EB=AB-AE и для AF=AB-BF следует, что EB=AF.

Рассмотрим прямоугольные ΔADF и ΔВСЕ. У них: 1) АD=BC (противолежащие стороны прямоугольника); 2) AF=EB (по доказанному выше). Значит, ΔADF = ΔВСЕ по двум катетам.

Из равенства этих треугольников следует, что ∠DFA=∠СЕВ. Отсюда, ΔEGF - равнобедренный с основанием EF, тогда GF=GE. Доказан пункт Б).

Т.к. АВСD - прямоугольник, то АВ║CD. Тогда ∠EFG=∠GDC(как накрестлежащие при секущей FD) и ∠FEG=∠GCD (как накрестлежащие при секущей ЕС). Отсюда, ΔDGС - равнобедренный с основанием DC, тогда DG=GC. Доказан пункт A).


Кому не трудно.дано: abcd - прямоугольникae=bfдоказать: а) dg=gcб) gf=ge​

Ответить на вопрос

Поделитесь своими знаниями, ответьте на вопрос:

за решение трех задач. Подсобите
Ваше имя (никнейм)*
Email*
Комментарий*

Популярные вопросы в разделе

shef3009
memmedovallahverdi0239
tefdst
АлександровнаВладлен243
inaine73
Dampil
shhelina
olma-nn477
Ямпольский
svt5299
bogatskayaa
volk88882
kalterbrun
Руслан Руденко1262
igorshevkun