ответ: S тр. ABCD = 300 ед.кв.
Объяснение: Проведём из т.A к большему основанию BC высоту AM.
Отрезок DC не только боковая сторона прямоугольной трапеции ABCD, но и высота этой трапеции.
DC ⊥ BC; AM ⊥ BC ⇒ DC ║ AM ⇒ CD = AM = 15 ед.
Т.к. AM - высота ⇒ ΔAMB - прямоугольный.
Найдём катет MB по т.Пифагора:
MB = √(AB² - AM²) = √(25² - 15²) = √(625 - 225) = √400 = 20 ед.
CM = AD, т.к. AM отсекает от трапеции ABCD прямоугольник DAMC.
Пусть x ед. меньшее основание трапеции (AD), тогда (x+20) ед. равно большее основание трапеции (BC). AB+BC+CD+AD=80 ед.
25 + (x + 20) + 15 + x = 80; 60 + 2x = 80; 2x = 20; x = 10
Если меньшее основание AD прямоугольной трапеции ABCD составляет 10 ед. ⇒ большее основание BC = 30 ед.
Формула площади нашей прямоугольной трапеции : (AD+BC)/2*AM.
⇒ S тр. ABCD = (10 + 30)/2 * 15 = 40/2 * 15 = 20 * 15 = 300 ед.кв.
Трикутник АВС, кут С=90, АВ=13, ВС=12, АС=5, АМ=МВ=АВ/2=13/2=6,5, проводимо перпендикуляр МН на АС, МН паралельна ВС, і згідно теореми Фалеса відсікає на АС рівні відрізки, АН=НС, МН-середня лінія=1/2ВС=12/2=6
2.трапеція АВСД, МН-середня лінія=9, ВС/АД=0,8, ВС=0,8АД, (ВС+АД)/2=МН, (0,8АД+АД)/2=9, 1,8АД=18, АД=10, ВС=0,8*10=8
3.Трапеція АВСД, АВ=СД=10, у трапецію можливо вписати коло за умови - сума бічних сторін=сумі основ, АВ+СД=ВС+АД, 10+10=ВС+АД, МН- середня лінія=(ВС+АД)2=20/2=10
4.трикутник АВС, АВ=ВС=АС, МН-середня лінія=1/2АС, АС=2*МН=2*6=12, периметр=12+12+12=36
5. Біля чотирикутника можливо описати коло за умови-сума протилежних кутів=180, кутА+кутС=3х+1х=4х=180, х=45, кутА=3*45=135, кутС=1*45=45, кутД=180-кутВ=180-100=80
Поделитесь своими знаниями, ответьте на вопрос:
Составьте уравнение прямой, проходящей через две точки А(-2;-2) и В (2;10) * 4. у=-3х-4 2. у=3х-4 3.у=3х+4 1. у=-3х+4
ответ:3) y=3x+4
Просто подставляешь координаты точек вместо переменных, но 2 точки должны подходить, а не одна.