1. 1) ∠AOD=∠BOC=130° (вертикальные), значит ∪ ВС=130°(стягивает центральный угол).
2)∪ АВ=∪АС- ∪ВС=180°-130°=50°, значит
∠АСВ =50/2=25 °(вписанный не центральный угол)
2. 1) ∆ АВС- равнобедренный , значит ∠ А=∠С=(180°-177°)/2=1,5°.
2) ∪ ВС=1,5°·2=3° (стягивает вписанный угол), тогда ∠ВОС=3° (центральный угол )
3. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-7°=83° .
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=83°.
4. 1) Касательная к окружности перпендикулярна к радиусу, проведенному в точку касания,
значит ∠ ОКМ=90°-84°=6°
2) ∆ ОКМ- равнобедренный (ОК=КМ=r) , значит ∠ОКМ=∠ОМK=6°.
5. ∠ ABC =90°(вписанный), т.к ∪ АС=180° (опирается на диаметр АС). Тогда ∠С=180°-90°-75°=25°
6. 1) ∪ AN=73°·2=146° (стягивает вписанный ∠ NBA). Тогда
∪ NB =∪ AB-∪AN=180°-146°=34°.
2) ∠NMB=34°/2=17° (вписанный не центральный угол)
7. 1) ∆ АОВ- равнобедренный(АО=ОВ=r), значит ∠ОАВ=∠АВО=15°. Тогда ∠ОВС =56°-15°=41°.
2) ∆ ВОС- равнобедренный(ВО=ОС=r), значит ∠ОВС=∠ВСО=41°.
8. ∆ АОВ =∆ СОD (AO=OD=r, CO=OB=r, ∠AОВ =∠CОD-вертикальные ), значит ∠ОАВ =∠ОСD=25°
Поделитесь своими знаниями, ответьте на вопрос:
Решить: 1) в треугольнике авс точка к лежит на ав, а точка n – на вс, причем ак: кв = 3: 2, а bn: nc = 3: 2. отрезки ck и an пересекаются в точке о. найти ао: оn. 2) на каждом из оснований трапеции abcd построены вне трапеции равносторонние треугольники. докажите, что прямая, соединяющая вершины треугольников, не лежащие на основаниях трапеции, проходит через точку пересечения диагоналей трапеции.
1) По теореме Менелая
BK/KA *AO/ON *NC/CB =1
2/3 *AO/ON *2/5 =1
AO/ON =15/4
2) Треугольники, образованные диагоналями на основаниях трапеции, подобны (по накрест лежащим углам при параллельных). Правильные треугольники очевидно подобны. Таким образом синий и красный четырехугольники подобны. Отрезки от вершин до точки пересечения диагоналей являются соответствующими в подобных фигурах и составляют равные углы с соответствующими сторонами. Отрезки отложены от диагонали на равные углы и составляют развернутый угол, то есть прямую.