1) в треугольной пирамиде dabc даны векторы da=a, db=b, dc=c. найти вектр dm, если м-центр тяжести основания abc. 2) дан треугольник с вершинами a(0; -1; -1), b(2; 0; -3), d(-5; -5; 3 вычислить с векторов его площадь и высоту: cd
2) Дан треугольник с вершинами A(0;-1;-1), B(2;0;-3), D(-5;-5;3). Площадь треугольника равна половине векторного произведения двух векторов, выходящих из одной точки. Вектор АВ (2; 1; -2). Вектор АС (-5; -4; 4). Векторное произведение a × b = = {aybz - azby; azbx - axbz; axby - aybx}= = ((4-8);(10-8); (-8-(-5))) = (-4; 2; -3). Модуль ахв = √((-4)²+2²+(-3)²) = √(16+4+9) = √29 ≈5,3851648. Площадь равна (а*в)/2 = 5,385165/2 = 2,6925825.
Условие перпендикулярности векторов: Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю. Эти векторы будут перпендикулярны, если выражение xaxb + yayb + zazb= 0. AB(2;1;-2). СД(-2;2;-1). 2*(-2)+1*2+(-2)*(-1) = -4+2+2 = 0. Но длина высоты равна удвоенной площади треугольника, делённой на сторону. Для этого находим длину стороны АВ: АВ = √(2²+1²+(-2)²) = √(4+1+4) = √9 = 3. СД = 2S/AB = 2*2,6925825/3 = 1,7950549.
germanleon
22.10.2021
ΔАВС - равнобедренный, АВ=ВС , вписанная окр. r=ОН=ОК=3 cм ВН - высота ΔАВС ⇒ ΔАВН - прямоугольный, ∠АНВ=90°, ΔВОК - прямоугольный, т.к. ∠ВКО=90° (как радиус впис. окр., проведённый к стороне Δ). ΔАВН ~ ΔВКО по двум углам, т.к. ∠АВН - общий, а ∠ВАН=∠ВОК=90°-∠АВН. По теореме Пифагора ВО=√(ВК²+ОК²)=√(4²+3²)=5 ⇒ ВН=ВО+ОН=ВО+r=5+3=8 (cм) Из подобия следует пропорциональность соответствующих сторон: ВК:ВН=ОК:АН=ВО:АВ ⇒ 4:8=3:АН=5:АВ ⇒ АН=6 , АВ=10. АС=2*АН=2*6=12 , т.к. высота ВН явл. ещё и медианой. tg∠ВАС=ВН/АН=8/6=4/3 ⇒ ∠ВАС=arctg4/3 Радиус описанной окружности найдём из формулы: . S=1/2*АС*ВН=1/2*12*8=48 (см²) R=(10*10*12)/(4*48)=6,25 (см)
barabanoveugeny
22.10.2021
Пусть имеем трапецию АВСД. Если центр окружности, описанной около трапеции, принадлежит ее большему основанию, то это основание - диаметр описанной окружности. Центр окружности - точка О - это середина основания АД, а точка пересечения диагоналей - точка К.
По заданию угол СКД = 80°. По свойству вписанного угла, опирающегося на диаметр, - он равен 90°. Это угол АСД. Тогда угол СДК = 90 - 80 = 10°.
Смежный угол АКД = 180° - 80° = 100°. Треугольник АКД - равнобедренный, угол КДА = (180°-100°)/2 = 40° Тогда углы при нижнем основании равны по 10° + 40° = 50°. Углы при верхнем основании равны по 180° - 50° = 130°.
Площадь треугольника равна половине векторного произведения двух векторов, выходящих из одной точки.
Вектор АВ (2; 1; -2).
Вектор АС (-5; -4; 4).
Векторное произведение a × b =
= {aybz - azby; azbx - axbz; axby - aybx}=
= ((4-8);(10-8); (-8-(-5))) = (-4; 2; -3).
Модуль ахв = √((-4)²+2²+(-3)²) = √(16+4+9) = √29 ≈5,3851648.
Площадь равна (а*в)/2 = 5,385165/2 = 2,6925825.
Условие перпендикулярности векторов:
Векторы являются перпендикулярными тогда и только тогда, когда их скалярное произведение равно нулю.
Эти векторы будут перпендикулярны, если выражение
xaxb + yayb + zazb= 0.
AB(2;1;-2).
СД(-2;2;-1). 2*(-2)+1*2+(-2)*(-1) = -4+2+2 = 0.
Но длина высоты равна удвоенной площади треугольника, делённой на сторону.
Для этого находим длину стороны АВ:
АВ = √(2²+1²+(-2)²) = √(4+1+4) = √9 = 3.
СД = 2S/AB = 2*2,6925825/3 = 1,7950549.